Watching the File System
Reporting Acts of Creation
© 1999 by Andrew S. Downs
andrew@downs.net

Abstract

It is often useful to know when file-related actions occur. Typically, this requires either
patching the File Manager or periodically searching one or more folders for items of
interest. You then need to manipulate the resulting information and do something useful
with it. This paper describes the design and implementation of a program which patches,
processes, and presents information regarding file creation.

Introduction

In this paper, | describe the components of a
system which can be used to obtain and relay
information about file-related events to users.
The term "user” will be used to refer to both end
users and developers, unless specified
otherwise.

Why do it?

Sometimes you want or need to know what is
happening in the file system. However, the
Macintosh file system (HFS and HFS+) does
not contain ways to easily discover file-related
events. (Folder actions in Mac OS 8.5 help
somewhat.) You may wish to know when a file
of a certain type is created, or when filesin a
particular folder get deleted, or maybe track
what folder a user saves to most often (perhaps
for the purpose of providing a helper
application). These types of actions can form
the basis of new products, or enhance an
existing product. But to get that information,
you need to interact with the file system.

How to do it?

The approach outlined in this paper consists of
breaking down the information retrieval and
notification process into manageable
subprocesses, each of which can be addressed
with a specific piece of code.

Overall, we want to:

= obtain information about file-related events
= massage the file information if necessary

= relay the information to a user

Each of these activities or subprocesses can be

Watching the File System , page 1

handled with code. But, how best to organize
such code?

Different components

Let's consider the first goal: obtaining

information about file-related events. This is

exactly what patches (in the form of system

extensions) are all about. In our case, we do not

want to manipulate results of any traps, but we

do need to know whether an operation

succeeded. This implies the following

characteristics of the patch:

= we need the parameters prior to execution (a
head patch)

= we need the result code after execution (a tail
patch)

In order to massage the file information, we
need an intermediary between the patch and
the user. This piece of code interacts with the
patch in order to obtain whatever information
the patch has been able to discover. This
requires that the patch and intermediary define
a structure (or class) that can be used to pass
file information.

Another, possibly stronger, reason for an
intermediary, is to reduce the amount of work
performed by the patch. This is especially
critical for traps that are called often, or that
might be executing 68k code. Performance
suffers if the patch has to do a lot of work
before returning. Providing an intermediary
solves some of the performance problem.

The approach outlined in this paper uses a
background application (typically of type
‘appe’) as an intermediary. Background apps

should be unobtrusive and reliable, while still
getting enough CPU time to do their work.
Implementing and debugging background apps
can be tricky; refer to Apple’s Technote 1070
for details.

For exchanging data between the patch and
background app, the File System Specification
(FSSpec) record is nearly ideal. We will see that
there are some additional fields that may be of
interest. Wrapping the FSSpec in a new
structure is one solution. Another is to use a
Parameter Block Record (PBRec), which is how
the low-level File Manager traps pass data. One
issue with PBRecs is that they are unions of
other record types, and so contain many
additional fields that will not be of interest,
resulting in wasted space.

A third component of our system is an interface
with the user/developer. This can take one of
several forms, depending on need. Four possible
solutions are discussed later in this paper. Two
of these (aliases and log files) are targeted at
end users, while the others (Apple Events and
callbacks) are intended for developer use.

Finally, there should be some way of controlling
the action of the other components. A control
panel is very useful for this purpose. The
references listed in the bibliography provide a
lot of detail on how to write control panels.
Consequently, | will not address their
implementation in this paper.

Figure 1 illustrates the various components of
our system, and how they interact.

Watching the File System , page 2

User App
~
Control
Panel
Background [.
App []Elr. <+
Patch @

Figure 1. Components of our file system watcher.

Data flow

The patch obtains initial information about the
file event by intercepting a File Manager call. It
also gets the result code back from the File
Manager upon completion of the original call.
The patch hands the file information to the
background app on request (when polled) or
asynchronously (a push to a shared data area).
Both methods work; each has its advantages.

The background app gets the raw data from the
patch and performs additional file system
gueries in order to clarify or provide additional
detail regarding the call. For instance, FSSpec
information is not useful to the average user,
but the path to the file is. Calling the File
Manager to get the full path to a file specified in
an FSSpec may be one of the background app’s
roles.

The interface to the user provides:

= useful information about file-related events
(e.g. paths, timestamps)

= a way for the user to user to specify items of
interest

= a way for the user to control patch and
background app operations

The relay of information to the user can be
accomplished through one of these methods:
= create an alias

< log to afile

= relay data using an Apple Event

= relay data using a callback

Other approaches can be devised, but only the
four methods listed above will be discussed.

Ease of updating

Separating the components by function or
purpose makes it relatively easy to update each
piece as needed, and post those (smaller)
updates to public archives or directly to
registered users. A more compelling reason is
that it is much easier as a developer to track
changes in your code, and isolate testing, if you
can focus on one or several small components
rather than one monolothic application.

Items of interest

What, specifically, should our system be
prepared to handle? Three possible
requirements are what, where, and when an
activity occured.

What happened

We need to get information about one or more
of the following activities for files and/or
folders:

= create

< copy

= delete

= rename/move

Each of these can be implemented using a patch
to one or more File Manager traps, either high-
or low-level. We will look at the file create
activity, but the same approach can be applied
to the other three.

Where it happened

As stated earlier, FSSpecs are useful in further
querying the File Manager, but paths are often
more useful to the end user. Depending on what
patches we've applied, and what we intend to
tell the user, we need:

= path to source

Watching the File System , page 3

= path to destination

This applies to both files and folders.

When it happened

If we are simply providing an alias to a file, the
operating system will ensure that the correct
creation/modification date gets associated
with the alias. But if we are writing to a log file,
we also need:

= timestamp of the activity

The timestamp can be obtained by querying the
File Manager or generating our own. The File
Manager approach is more accurate, given
potential system and network latency.

The patches

The patches discussed in this section have been
applied in several products. The techniques
shown are a combination of several presented
in the references listed at the end of this paper.

Determine what to patch

For each "what" item, we need to determine the
possible traps to patch. An API reference is
indispensible for this purpose. Inside Macintosh
and Think Reference contain cross-references
and descriptions which help immensely. For
instance, we can look up Cr eat e(),

HCr eat e(),and Di r Cr eat e() to determine
which of these traps suit our needs for file and
folder creation. We also need to consider

PBCr eat e() and PBHCr eat e() in their
synchronous and asynchronous forms.

Purpose of the patches

As stated previously, the patches are as benign
as possible (while still being useful). The intent
is to gather, not change, information being
passed to or received from the original trap.

How to patch

The patch code can be very simple. Recording
the desired information is easier on the PPC,
since you can avoid assembly language
completely. However, the 68k assembly
required is straightforward.

All of the patches listed below behave in the
same manner as the patch code presented in
Listing 1:

« PBHCr eat e()

« PBHDel et e()

e PBHRenane()

Listing 1 contains code to patch

PBHCr eat eSync() . Thei f ndef handles
68k and PPC compiles. Both versions of the
function follow a similar sequence.

The source code for the 68k macros is provided
on the conference CD, along with the contents
of the code listings. In the listings presented in
this paper, some code has been removed to
save space.

#i f ndef powerc
asm void M/PBHCreateSync(
HPar mBl kPt r paranBl ock) {

Macr oPr eProcess
nove. w kPBHCreateSync, -(sp);
Macr oSaveVal ues

nove. | ol dPBHCr eat eSyncAddr ess, al;

MacroCal | Ori gi nal Trap
}
#el se
OSErr MyPBHCr eat eSync(
HPar mBl kPt r paranBl ock) {
OSErr theResult;
/1 Hold the parans and the trap id
/1 tenporarily.
CopyHPar anBl ockVal ues(par anBl ock,
kPBHCr eat eSync) ;

/1 Call the original trap.
t heResult = Cal | OSTrapUni ver sal Proc(
(Universal ProcPtr)
ol dPBHCr eat eSyncAddr ess,
uppPBFi | eProcl nfo, paranBl ock);

/1l Check result. On success,

/!l save the data.

if (theResult == noErr)
Watching the File System , page 4

Set ArrayEl enent () ;

return theResult;
}
#endi f
Listing 1. Patching PBHCreateSync().

Now what?

Once the patch receives information regarding
the file event (in the form of a PBRec), it needs
to store that info until the original trap returns.
If the call was successful, the retained data
should be enqueued for the background app to
process (in the push model), or stored in an
array until requested (in the polling model).

Background processing

Now the background app must retrieve/receive
data from the patch. Figures 2a and 2b
illustrate the interaction using two approaches.

Background

App)
Request element pointer

via Gestalt()
=]

- Return element pointer
-

Patch

Figure 2a. Interaction using Gestalt().

Figure 2a illustrates a polling model. Here, the
background app requests the address of the
patch’s Gestalt handler, which the patch
advertises via NewGest al t () . Then, the
background app uses a selector value to request
the next element from the patch.

Background

Patch

By

Legend

filled element

empty element

Figure 2b. Interaction using shared memory.

In Figure 2b, the background app and patch
share a set of data structures. The patch
retrieves the next empty element, fills it, and
returns it to the pool. The background app
retrieves the next filled element. There is no
need for direct communication, except to setup
the shared memory area. Determining whether
an element is empty or not can be done by
checking its values. The background app needs
to clear the element contents after use.

Requesting data from a patch

In the polling model, Gest al t () can be used
to obtain a pointer to the patch's routine
through which it will provide the data. Then,
calling that routine with an appropriate selector
will result in the return of a struct containing the
file info. An example of how to do this is
presented in [Mark94]. A partial sample is
presented in the next few listings.

Here is a sample data structure that can be
used to hold the FSSpec data, plus a little more
(such as the number of the trap that was
called).

typedef struct FSPatchd obals {
short t heTr apl d;
short t heVRef Num
| ong t hePar | D;
Str63 t heString;
OSType t heFi | eType;

} FSPat chd obal s, *FSPat chd obal sPtr;

Watching the File System , page 5

For this example, we will use an array of

structs to track the calls to _Create.

FSPat chd obal s gFSPat chd obal s|
kMaxNunFi l es];

Here is part of a Gestalt handler that can be
used in the patch to respond to the background
app’s request for the next element.

static pascal OSErr FSPatchGestalt/(
OSType t heSel ect or,

| ong *theResponse) {
switch (theSelector) {

case kGCet Next El ermrent :
/1 Return the next elenent.
*t heResponse = (long)
&gFSPat chd obal s|
gLast Retri evedEl enent];

/1 Update the index.
gLast Ret ri evedEl enent ++;

/1 Wap to zero.
if (gLastRetrievedEl emrent >
kMaxNunFiles - 1)
gLast Retri evedEl enent = 0;

br eak;

Listing 2. Using Gestalt() to return data.

The background app can find and call the
patch Gestalt handler. First, find the handler
address:

CSErr
static

t heErr;

pascal OSErr

(*FSPatchGestalt)

(OSType sel ector,
| ong *response);

theErr = Gestalt(kPatchSig,
(long *)&FSPatchGestalt);

Send the appropriate selector to request the
next array element:

theErr = FSPatchGestalt (

kCGet Next El enent, (long *)
&JRAG obal sPtr[glLastProcessed]);

gLast Processed++;
Listing 3. Using Gestalt() to request data.

Receiving data from a patch

Using a shared data area, the patch must first
populate a structure or object, as shown in
Listing 4. (An XFi | eWat cher Recor d is
similar, though not identical, to the

FSPat chGd obal s structure discussed
previously.) The HPar mBIl kPt r is the source
for info for the newly created file.

HPar mBl kPt r pb;

XFi | eWat cher Record *rec =
(XFi | eWat cher Recor d*)
PopAt omi cSt ack(gl nput Stack);

if(rec) {
rec->rec.action = kCreat edFil e;
rec->rec. vRef Num =
pb->fil eParam i oVRef Num
Bl ockMovePSt ri ng(
pb->fil eParam i oNanmePtr,
rec->rec. nanel);
rec->rec.dirlDl =
pb->fil eParamioDirl D,

PushAt om cQueue(
(At omi cEl ement *)
gQut put Queue);

rec,

Listing 4. Using a shared data area.

Now the background app must retrieve the next
available (filled) structure or object from the
shared data area. It can use, and then clear, the
object before returning.

XFi | eWat cher Record *rec =
(XFi | ewat cher Recor d*)
PopAt onmi cQueue(gCQut put Queue);

If you are not familiar with atomic queues, you
should definitely read “Atomicity”
[Rentzsch99] while you're here at the
conference.

Watching the File System , page 6

Determining something useful

After receiving the raw data for a newly created
file, the background app can obtain the path to
that file using PBGet Cat | nf o() .

If necessary, we can add our own timestamp
using Get Dat eTi me(), or query the OS for
the creation time of the file using

PBGet FI nfo().

Those Toolbox calls are well-documented in
Inside Macintosh, THINK Reference, etc. Plus,
relevant examples abound in Macintosh
programming books. Some relevant code
fragments are provided in the next section.

Informing the user

There are four methods of providing info to the
user or developer. Of these, aliases and log files
are suitable for end users. Callbacks and Apple
Events are intended for developers.

Creating an alias

Creating an alias is a little involved. I like the
example in [Little91]. Below are a few code
snippets that handle potential problems.

Remember to put the alias file somewhere
meaningful. You may want to create your own
folder to hold the aliases. The following code
checks if a named folder exists, and if not,
creates it.

First, find the parent folder of our intended
destination folder. Here, the parent is Apple
Menu Items, so our folder should appear in the
Apple Menu.

| ong t heFol der 1 d;
ClnfoPBPtr thePBPtr;
FSSpec t heFSSpec;
CSErr t heError;

t heError = Fi ndFol der (kOnSystenDi sk,
kAppl eMenuFol der Type,
kCr eat eFol der, &t heFSSpec. vRef Num
& heFSSpec. parl D);

Create the new directory. If it already exists,
the call will fail, and we need to get the existing
dir id using PBGet Cat | nf o() .

theError = DirCreatg(
t heFSSpec. vRef Num t heFSSpec. par | D,
“\pMy Fol der”, &theFolderld);

if (theError !'= noErr) {
t heError = DoFi ndOneFol der (

fileError = Fi ndFol der(
kOnSyst enDi sk,
kAppl eMenuFol der Type,
kCr eat eFol der, &t heFSSpec. vRef Num
& heFSSpec. parl D);

thePBPt r->dirlnfo.ioConpletion = OL;
thePBPtr->dirlnfo.i oNanePtr =
“\ pMy Fol der”;
t hePBPtr->di rl nfo.i oVRef Num
t heFSSpec. vRef Num
thePBPtr->dirinfo.ioDrDirlID
t heFSSpec. par | D
thePBPtr->dirlnfo.ioFDirlndex = 0;

theError = PBGet Catlnfo(thePBPtr,
true);

while (thePBPtr->dirinfo.ioResult ==
1) {1}

Check that the call succeeded, and returned a
valid directory id.

if ((thePBPtr->dirInfo.ioResult ==

noErr) &&

(theError == noErr) &&

(thePBPtr->dirinfo.ioFl Attrib &
0x0010))

t heFol derI D =
thePBPtr->dirinfo.ioDrDirl D
}

Listing 5. Locating the destination directory.

Now use that directory id when creating the
alias file. The last line of code in this listing
establishes our special folder as the destination
for the alias.

FSSpecPtr al i asSpec;
CSErr fileError;

Bl ockMove(theFSSpec. nane,
al i asSpec. nane,
t heFSSpec. nang[

Watching the File System , page 7

0] +1);

fileError = Fi ndFol der(
kOnSyst enDi sk,
kAppl eMenuFol der Type,
kDont Cr eat eFol der,
&al i asSpec. vRef Num
&al i asSpec. parlD);

al i asSpec. parl D = theFol der | D

/1 Now cal | FSpCreateResFile(), etc.
Listing 6. Settng up to create the new alias.

Logging to a file

Logging data to a file is easy, as long as you're
appending. This next example appends to a
text file. The record format looks like this:
Date <tab> Time <tab> Path to file

For example:
Veéd, May 12, 1999 10:47:05 PM Devt::tnp data

Since the user may delete the log file at any
time, ensure it exists before opening.

FSSpecPt r
OSEr r

| ogFSSpecPtr;
fileError;

fileError = HCreat e(
(*1 ogFSSpecPtr).vRef Num
(*1 ogFSSpecPtr). parlD,
(*1 ogFSSpecPtr). nane,
kLogFi | eCreat or Type,
kLogFi | eType);

Open, and move to the end of, the file.

short fil eRef;

fileError = FSpOpenDF(| ogFSSpecPtr,
kShar edPer m ssion, &fileRef);

Set FPos(fileRef, fsFromLECF, 0);

Using the current time as a timestamp avoids

the setup associated with (yet another call to)

PBGet Cat | nf o() . But it’s less accurate. As

long as we get called soon enough, the

difference may only be a few seconds.

t heTi ne;

unsi gned | ong

Get Dat eTi ne(&t heTine);

Convert the timestamp into a human-readable
date. Then write it out.

Str32 theString,

| UDat eString(theTi me, abbrevDat e,
theString);

dat aCount = theString[0];

Move the date string into a buffer, then write

the buffer to the file. Remember to initialize any

pointers (not shown).

| ong dat aCount ;
short i;
Ptr dat aPtr;

/1 Faster than Bl ockMve()?
for (i =0; i < dataCount; i++)
dataPtr[i] =theString[i + 1];

fileError = FSWite(fil eRef,
&dat aCount, dataPtr);

Adding a <t ab> between fields improves
readibility.

*dataPtr = "\t';
dat aCount 1;

fileError = FSWite(fil eRef,
&dat aCount, dataPtr);

Adding the time string is done the same way,
but is not shown.

Next, get the volume name.

Par anBl ockRec t heVol une;
OSEr r fileError;

t heVol une. vol unePar am i oConpl eti on
= 0L;
t heVol une. vol unePar am i oNanePt r
= (StringPtr)& heString;
t heVol une. vol unePar am i oVRef Num
= t heVRef Num
t heVol une. vol unePar am i oVol | ndex
= O'

Watching the File System , page 8

fileError = PBGetVInfo(&theVol une,
true);

Writing the volume name to the file is done the
same way as the date string. Don’t forget to
add the two colons after the name.

Next, iterate over the directories in the file’s
path.

ClnfoPBPtr thePBPtr;
fileError = noErr;
while (fileError == noErr) {

t hePBPt r - >di r I nfo.ioConpl eti
oL;

t hePBPtr->dirlnfo.i oNanePtr
tenmpStringPtr;

t hePBPtr->di rl nfo.ioVRef Num
t heVRef Num

thePBPtr->dirinfo.ioDrDirID
t enpFol der | D

thePBPtr->dirlnfo.ioFDirlndex = -1;

o
)
1

fileError = PBGetCatlnfo(thePBPtr,
true);

while (thePBPtr->dirlnfo.ioResult
== 1) {

}

As long as the result refers to a directory, use
the id to find the parent of this directory.

if ((thePBPtr->dirlnfo.ioResult
== noErr) &&
(fileError == noErr) &&
(thePBPtr->dirinfo.ioFl Attrib
& 0x0010))
thePBPtr->dirInfo.ioDrDirID =
t hePBPt r->dirlnfo.ioDrParl D

}

Each iteration will place the name of the
directory inthedi r I nf o. i oNanePt r field. This
is the value we want to print, followed by a
colon. However, since we’re iterating up the
directory tree, we should store the names
temporarily, then write them out in the correct
sequence after reaching the root.

Finally, write the name of the file, followed by a
<return>,

StringPtr fileNamePtr;
dat aCount = fileNanmePtr[O];
for (i =0; i < dataCount;

databPtr[i] =
fileNanePtr[i

i ++)
+1];

dataPtr[i] ="\r";
dat aCount ++;

fileError = FSWite(fil eRef,
&dat aCount, dataPtr);

Dispose of any pointers, close the file, and
flush the volume.

Di sposePtr(dataPtr);
FSC ose(fil eRef);

fileError = FlushVol (NIL,
(*1 ogFSSpecPtr).vRef Num);
Listing 7. Logging new file info.

Now let’s look at notification from a
developer’s perspective.

Callback functions

Callbacks are great from the perspective of
time. But, they can be difficult to setup initially.
And you need to make sure you don’t call a
routine that has moved! This will certainly
cause problems if the application you're calling
has quit.

Callback registration

Registering a callback requires that both sides
know what to expect. For example, we can use
one registration mechanism if we can
distinguish between the types of activities that
should be sent to a particular callback.

enum {
kCr eat eFl ag,
kDel et eFl ag,
kCopyFl ag,

Watching the File System , page 9

kRenaneFl ag

s

Similarly, the structure of the data being

exchanged must be defined. Here, we’ve added

a few fields to those defined by an FSSpec. This

helps the caller in several ways:

= one callback may be used for multiple traps

= the sender can populate the structure with the
most commonly used fields

The caller still has access to the various File
Manager calls to get more information if
necessary.

typedef struct FWata {
short theTrapld;
short theVRef Num
| ong t hePar | D;
Str63 theString;
OSType t heFil eType;

} FWbata, *FWbataPtr;

This structure defines the data sent during an
actual registration. The function address is sent,
and the recipient needs to create a

Uni ver sal ProcPt r based on the action
specified (see the previous enumdefinition).

typedef struct FWsubscribe {
short theAction;
| ong *t heCal | backAddr ;

} FWsubscri be, *FWBubscri bePtr;

The callback convention looks as follows:

Procl nfoType uppCreateFil eProclnfo =
kPascal St ackBased
| RESULT_SI ZE(kNoByt eCode)
| STACK_ROUTI NE_PARAMETER(1,
SI ZE CODE(sizeof(FWoata)))

Sending in a registration request might look
something like this:

OSErr theErr = noFErr;
Sel ect or Functi onUPP nmyGest al t UPP;
FWBubscri bePtr theFWsubscri bePtr;

Locate the function handling callback
registration. Using Gest al t (), you need to
know the advertised signature.

theErr = :: Gestalt(kTargetSi gnature,
(long *)&myGestalt UPP);

if (theErr == noErr) {

Allocate and fill a structure specifying the type
of activity we’re interested in, and the address
of the callback function.

t heFWBubscri bePtr =

(FWBubscri bePtr)

NewpPt r (si zeof (FWsubscribe));
if (theFWsubscribePtr '=nil) {
t heFWSBubscri bePt r- >t heAction =

kCr eat eFl ag;

t heFWBubscri bePt r - >t heCal | backAddr
= (long *)&WCreateCall back;

theErr = Call Sel ector Functi onProc(
nmyGest al t UPP,
GESTALT_ADD_CALLBACK,
(long *)theFWsubscri bePtr);

Di sposePtr (
(Ptr)theFWsubscribePtr);

Listing 8. Registering a callback: requester.

On the receiving side, the corresponding
registration process looks like this in the
Gest al t () handler.

theAction = ((FWBubscri bePtr)
t heResponse) ->t heActi on;

if (theAction == kCreateFlag)
gCal | backProcPtr =
NewRout i neDescri pt or (

(ProcPtr)((FWsubscribePtr)
t heResponse) - >t heCal | backAddr,
uppCr eat eFi | eProcl nf o,
kPower PCl SA) ;

Listing 9. Registering a callback: receiver.

We distinguish between the activities in case we
want to manage _Cr eat e callbacks
differently. Notice that a UPP is built here. This
example also assumes the PowerPC instruction
Watching the File System , page 10

set architecture.

This example uses a single global variable to
hold the callback UPP. Using a list or queue
would increase the potential number of clients.
[Rentzsch99] addresses this issue; you should
definitely check it out.

Callback execution

Call the callback via

Cal | Uni versal Proc() .Don’t forget to
populate the data structure first.

FWDat a t heF\WDat a;

t heF\WDat a. t heVRef Num =

gPar anBl ockCopy->fi | eParam i oVRef Num
/'l etc.

Cal I Uni ver sal Proc(gCal | backProcPtr,
uppCreat eFi |l eProcl nfo, theFWdata);
Listing 10. Calling a developer-provided routine
with the new file info.

On the receiving side, the stack needs adjusting
to account for the first two params to
Cal | Uni versal Proc().

Upon entering the callback, increment the stack
pointer by two words:

asmvoid Prologdue() {
addi sp, sp, 0x08
bl r

}

When leaving the callback, decrement the stack
pointer by the same amount:

asmvoid Epilogdue() {
subi sp, sp, 0x08
bl r

}

This particular callback is part of a PowerPlant

project, and simply relays the incoming data to

a separate method in the application:

pascal void My Cr eat eCal | back(
FWDat a theFWdata) {

Pr ol ogd ue();

((FilewatcherDenmo*)
par ent App) - >Handl eCr eat e(
theFWbata);

Epi | ogd ue();

}
Listing 11. Inside the callback.

Figure 3 shows the raw information being fed
(via the callback just discussed) to a text area
for diagnostic purposes. It displays the FSSpec-
related fields associated with a file creation.

File Activity =

File/folder activity reported by
Filellatcher:

YWolume ref: -1
Directory id: 2
File name: Ficture 2
Yolume ref: -1
Directory id: 65386
File name: Ficture 2

Ao Jui]

KID

%

Figure 3. Demo app receiving info from the file
system watcher.

Sending Apple Events

Apple Events provide another convenient
mechanism to transmit data from one
component to another. This section discusses
the sending of file creation information from the
patch to the background app.

In order to support scripting, and also to allow
for checking of required data elements, the
background app contains an ‘ aet e’ resource
that defines a custom Apple Event for handling
file creation. This example uses an FSSpec,
rather than the FWData type discussed in the
section on callbacks. The FSSpec is sent as the
direct parameter for this event.

resource 'aete' (0) {
0x1, 0x0, english, roman, {
"File Watcher Suite",
"Specialized stuff.",

{

Watching the File System , page 11

"FWAE', 1, 1,

/1 Events
"handl e new file",
"Anewfile to record. ",

"asd9', 'newf',
noReply, "No reply.",
repl yOptional, singleltem
not Enuner at ed,
reserved, reserved, reserved,
reserved, reserved, reserved,
reserved, reserved, reserved,
reserved, reserved, reserved,
reserved,
"xxxxt 0 "ESSpec for new file",
di rect ParanRequi red, singleltem
not Enuner at ed,
doesnt ChangesSt at e,
reserved, reserved, reserved,
reserved, reserved, reserved,
reserved, reserved, reserved,
reserved, reserved, reserved,
{}
oAy L
}
}s
Listing 12. Resource defining a file create Apple
Event.

Preparing and sending an Apple Event is
addressed in [Little91]. This code, located in
the patch, populates an event with the most
recent _Cr eat e data:

AEAddr essDesc t heAddressDesc;
Appl eEvent t heAppl eEvent ;
FSSpec theSpec;

CSErr theError;

t heError = FSMakeFSSpec(
gPar anBl ockCopy- >fi | eParam i oVRef Num
gPar anBl ockCopy->fil eParam i oDir | D,
gPar anBl ockCopy->fi | eParam i oNamePtr,
&t heSpec);

t heError = AECreat eAppl eEvent (
"asd9', 'newf', &t heAddressDesc,
kAut oGener at eRet ur nl D,
kAnyTransacti onl D,

&t heAppl eEvent);

t heError = AEPut ParanPtr(
&t heAppl eEvent, keyDirect Obj ect,
t ypeFSS, &t heSpec,
si zeof (FSSpec));

Listing 13. Populating an Apple Event.

The receiver of this Apple Event must be
prepared to handle it. Here, the background
app registers the function Handl eCr eat e()
as the recipient of file creation events. The class
and id match those found in the ' aet e
resource.

const OSType
const OSType

kTest Event Cl ass =' asd9';
kCreateEventld = ' newf';

AEIl nst al | Event Handl er (
kTest Event O ass, kCreateEventld,
(AEEvent Handl er Pr ocPt r) Handl eCr eat e,
0, false);

}

The function Handl eCr eat e() will extract
the data from the event, and pass it off for
additional processing. For our custom event, the
i temsl nLi st value should always be one.

FSSpec theFSS;

CSErr t heErr;

SFTypelLi st theTypeli st;

Si ze act ual Si ze;

for (i =1; i <= itenslnList; i++) {

theErr = AEGet Nt hPtr(&doclList, i,
typeFSS, &t heKeyword, &typeCode,
(Ptr)& heFSS, sizeof(FSSpec),
&act ual Si ze);

theErr = DoMakeAl i as(theFSS);

}
Listing 14. Handling an Apple Event.

Conclusion

The Mac OS file system can provide a lot of
useful information regarding file and folder
activities. The difficulty lies in determining
what information you desire, and obtaining that
information in a timely manner (i.e. as it
happens). Once you have the raw data
associated with a file system event, translating
it into something useful, and then
communicating that info to a user or developer
is straightforward. This paper presented
several ways of doing all of the above.
Hopefully, you can develop new products or
enhance existing products using the techniques
Watching the File System , page 12

described here.

Bibliography

[Apple93] Apple Computer, Inc. AppleScript
Scripting Additions Guide. Addison-Wesley
Publishing Company, Reading, MA. 1993.

[Apple94] Apple Computer, Inc. Inside
Macintosh: Operating System Ultilities.
Addison-Wesley Publishing Company, Reading,
MA. 1994,

[Apple9d6] Apple Computer, Inc. Technote
1070: Background-Only Applications. October,
1996.

[Little91] Little, Gary and Swihart, Tim.
Programming for System 7. Addison-Wesley
Publishing Company, Reading, MA. 1991.

[Mark94] Mark, Dave. Ultimate Mac
Programming. IDG Books Worldwide, Foster
City, CA. 1994,

[Rentzsch99] Rentzsch, Jonathan. Atomicity:
Concurrent Data Access Without Blowing Up.
Red Shed Software, Schaumburg, IL. 1999.

[Thompson94] Thompson, Tom. Power
Macintosh Programming Starter Kit. Hayden
Books, Indianapolis, IN. 1994.

[Zobkiw95] Zobkiw, Joe. A Fragment of Your
Imagination. Addison-Wesley Publishing
Company, Reading, MA. 1995.

